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I. INTRODUCTION

In this paper two dual algorithms for the efficient
concurrent computation of partial sums are introduced and their
performance assessed. These algorithms are members of a novel
class of algorithms and architectures that is particularly suited
for arithmetic intensive, high throughput computing. This class
is based on partitioning the desired computations 1nto parts that
can assume a relatively small number of distinct forms., The
redundancy resulting from the appearance of_a given form more
than once is removed by computing each form only once. The
computation of all the distinct forms is performed first, and
then combined appropriately to obtain the desired results. The
partitioning size is parameterized by a partition parameter, or
parameters. A cost function is defined to take into account all
the relevant factors such as the number of operations, chip area,
and computation time. This cost function is, after partitioning,
a function of the partition parameter(s) with respect to which it
could be minimized. The minimum cost is attained at certain
optimal partition sizes, that should be used in the

implementation.

The partial sums computation of interest to us in this paper
are expressed in the form
Y = BX + U (1.1)
where the U, X, B, and Y are of dimensions Mxl, Nxl, MxN, and
Mx1, respectively. U and X are data vectors, and B is a binary
matrix of zeros and ones that define the desired partial sums YV,

Y

The vector X contains all the data from which subsets for the
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various partial sums are selected. T-e vector U is addea cnly to ;
complete the duality of the two algorithms, and has an :
ingsignificant effect on their behavior.

The first algorithm to compute these partial sums is based
on partitioning the output, Y. In section I1 the preliminary A
version of this algorithm presented in (1, 2) is completed. A
dual algorithm based on partitioning X, the input, is presented »
in section 1!l where the complete duality of the two algorithms
is established. In assessing the performance of the algorithms,
some parameters are treated initially as continuouq. while only
integer values could be used in the implementation. This is shown
in section IV to have an insignificant effect on the performance
of the algorithms. In section V various aspects of implementing
the algorithms are considered, with particular emphasize on
parallel and pipelined architectures for high throughput
applications.

Let the number of operations in direct computation of Y be {
denoted by D. The proposed algorithms are shown to result i

replacing D by 0(D/locg D). The proporticnality factor

Ty 87

associated with this "order of" estimate is in the range 1| to 4

for various instances of the algorithms, as well as for their

combination as shown in section VI, Gereralizations of this work

are suggested alsc in section VI, while suggestions fo;

applications and topics for further research conclude the paper

in section VII.
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I11. ALGORITHM BASED ON OUTPRUT PARTITIONING

In this section we discuss an algorithm that computes a set
of concurrent partial sums by partitioning them optimally into a
number of subsets. Each subset is computed independently,
applying the concept of redundancy removal which s best
introduced first tﬁrough the following characteristic case,

essential to the algorithm.
A, First Characteristic Case

Consider the computation of the partial sums of (1.1)
Y = BX + U (2. 1)
for B with dimensions r x n, where
n=ar - ' 2.2
In addition, all the columns of B are distinct and none of all
zero entries. This implies that the entries of each columns of B
corresponds to the binary representation of one of the integers
{1, 2 ..y 8" - 1). Also, each row of B contains exactly 2"—1!
ones and 2"-1 - { zeros.
The algorithm is comprised of two steps that are applied
alternately until all partial sums are computed:

Step 1

Compute one of the partial sums. This requires A1) = ar-1

additions and eliminates orne row from B, and the corresponding
entry of U. There are now two identical columns of B
corresponding to each of the binary representations of the
numbers € 1, 2, ..., &2r=l - 1) and one column with all zero

entries.




o

o,

Remove the zero column from B arnd the corresponding entry from X. §
Remove one of each two identical columns of B after adding the ‘
corresponding entries of X. This requires Ajp = 2r-1 - i {‘
additions. :ﬁ
LM

The two steps comprise ore iteration of the algorithm. The .:
first execution of the algorithm requires Rt = A1 + Rz = 2 - 1 :;
and replaces r» by r - 1, The ith execution requires Ajy = ar-i, i"
Ajg = 2r-l - 1 additions for steps 1 and 2 respectively, t
resulting in ;
Ri = Aj1 + Aiz ;:

= 2r=i+l - 4, i = 1, 2, cu.y r. (2. 3) }

From eq. (2.2, 2.3) the total number of additions to compute all ;
partial sums i¢ found to be g
) ¥

A(n) = £ Ay =

img

)

=2(2" - 1) ~praan-r o

* !
= 2n - log(n+l) = O0(n) X 2n (2. 4) NS

where log is to the base 2 throughout this paper. The number of ;J
additions per output is then E
Ctn) = (2(8" = 1) = r)/r = 2(n/r) - 1 S

= 2(n/login+1)) - 1 = O(n/log n) = 2n/log n (8.9 SE::

Since each row of B contains 2! ones in this ti
characteristic case, a direct computation of each partial sum .
¢

independently results in the following number of additions per E
output §.
~Y

Dirm) = 2r=1! a (n + 1)/2 = D) n/2 (2.6) =
The efficiency of_ our  approcach in comparison to direct g&
g
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computation could be expressed by the ratio
nn) = C(n)/D(n) = 4(n - (log(n+1))/8)/(n+l)log(n+l)
= 0(1/log n) = 4/leg n (2.7)
or equivalently by the expressions

nin) = 0(1/1cog Din)),

Ctn) = O0(D(n)/1log D(n)) (2.8)
which indicate the type of computational savings achieved by the
proposed algorithm.

An important aspect of this algorithm is its invariance with
respect to the partitioning within the r outputs in steps 1 and 2
above. So, instead of computing one output at a time. followed by
merging inputs corresponding to redundant computation for the
remaining outputs, we could partition the r outputs intoc two sets
of ry and rz2 outputs each. Dus to the assumption of distinct
columms of B, and the carefully chosen n according teo (2.2), the
computations involved in the r1 and rz outputs are mutually
exclusive and could be computed independently. The r1 outputs
require 2" - 1 - (2ry - 1) additions to add inPuts corresPonding
to identical columns of B;, followed by A(ny) additions as
determined by the above characteristic case, but with dimensions
ny and r1. Similar argument for the remaining rz ocutputs lead to

Aln) = A(ny) + 2" - 1 - (8rg = 1) +
Alng) + g2r - 1 - (arp = 1) +
whichy wWwith r = ry 4 o 1gad to
A(n) = 2n - r
identically to (2.4). For n a power of 2, a scheme of

\

progressively finer partitioning, and combining data with

w

A0 ‘ﬁ

a8

Py

5((!/‘"“

%

-
o
K



identical roles in the required computation is possible here. At
every step, the number of parallel computations doubles until all
outputs appear simultarnecusly at the last step. In the fastest
implementation of an adder tree to be discussed in the sequel,
and regardless of the partitioning method, and if all data
additions are performed by adder trees, then all the ocutputs will
be computed after a time period corresponding to r - 1 additions.

The dimensions of this characteristic case were carefully
chosen. Therefore, only the redundancy removal aspect of the
algorithm was applied. In the sequel we condider'problems with
arbitrary dimensions and show how redundancy removal is combined

with optimal partitionirng to result in a complete application of

the algorithm.

B. The General Case

To apply the above appreoach to the general case with
arbitrary dimensions (1.1), we partition the M partial sums Y,
ard similarly U, into s sets Yi, i =1,

2y esey 8, of r partial

sums each. The parameters r ard s are related by

M= vrs (2.9
Furthermore, we assume that r satisfies

N )y 2ar -1 (8.10)
For a worst case analysis, we assume that all the distinct 2r - 1
nonzereo binary vectors are present in each Bj. For each group of
r partial sums we begin by executing step 2 as introduced above.
This requires N - (2™ - 1) additions per Bj. The problem is now
identical to the characterist:c 'case discussed above, and

therefore 2(2r - 1) - » additicns per r partial sums are needed
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to complete the computaticor. So the riumber of additiorns per r E

partial sums is, in this worst case analysis k

A(N,r) = (N + 22X = r = 1) (2.11) 3

Equivalently, the number of additions per output is =~
C(Ny»r) = (N + 28" =« r - 1)/r

= (N + 2" - 1)/r =~ 1 (2.12) !

There are at least two approaches to investigate the optimal Eﬁ

values of r at which C(N,r) attairms its miviimun. In the first i

approach the minimum is feound by treating r as a continuous g

ta

variable. The derivative of C with respect to r vanishes at &

N=2rr In2-1) + 1 (2.13) o

at which C attains its minimum value. There is no explicit closed 55

form expression of r as a function of N that could be obtained :i

from eq. (2.13). However, such an expression is not essential in E

applying the algeorithm where only integer values of r are of ;

interest. The first integer value of r for which (2.10,2.13) are %

simultareously valid is 3. A table of the values of N ;

corregponding to » = 3, 4, ... could be formed to cover the range f'

of values of N of interest. The initial estimate ;

ri = log(N-1) (2. 14) R

could be used either to identify the range of values of r that N

are then used to generate a small table via (2.13), or as the EI

initial term in the iteration g

ri+1 = log(N-1) - log(ri{ In 2 =-1), i =1, 2, ... (2.15) :

which converges rapidly to the solution of (2.13). With ri1 as E

defined in (2.14), the next two iterations result in ;;

. X
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rg = log(N=1) - log(lm(N-1) - 1),
r3 = log(N=1) = log(ln(N=1) = In{ln(N-1) - 1)) (2.16)
From (2.12, 2.13) we obtain the minimum number of additions per
output corresponding to the optimal value of r
C=((IN-D)In2 /7 (r1Ing2ag-1) -1 (2.17)
which with (2.14, 2.15) result in
C 2 ((N-1) /A(log(N—i) -1)) -1 N/ leog N (2.18)
Direct computation requires an average of
D = N/2 (2.19)
additions per partial sum. The efficiency of. the proposed
algorithm is characterized by
n=C/D %= 2/log N (2. 20)
which is a conservative estimate of its performance, since we are
comparing our worst case to the average direct computation. In
this algorithm, all the blocks of r partial sums are computed
independently. Redundancy is removed only within eeach block.
Further redundancy could be removed based on computation shared
between blocks. This additioral redurndancy is insignificant and
its removal would require complicated communication schemes. A
second approach in inveastigating the optimal values of r is

presented in section IV, where r and N are assumed ¢to be

integers.
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II1. A DUAL ALGORITHM

In this section we introduce an algorithm based orn input
partitioning. This algorithm is a dual to the one discussed above
with the input and the output roles exchanged in all significant
expressions and statements. There are, however, differences in
implemerting the two algorithms,. There is also a subtle
difference in gerneralizing the two algorithms to cperations other
than addition. These differerces will be addressed in the
following sections.

The following characteristic case is of essence since it

illustrates the redundancy removal aspect of this dual algorithm,

A. Zecond Characteristic Case

Congider the computation of the partial sums of (1.1)
Y = BX + U (3. 1)
but for B with dimensions n x r, where
n=2r - 1 (3.2)
In addition, all the rows of B are distinct and rone of all zera
entries. This implies ¢that ¢the entries of each row of B

correspond to the binary repregsertation of orne of the integers

{1, 2, ..., 8" - 1>, Also, each column of B cortains exactly
gr-1 ones and 2"-1 - 1 zercs. B is, in this case, the trarnspose
of that in the first characteristic case. Let us first ignore U.

Computing Y in this case amounts to computing all the partial
sums of the entries of X.

Let P(r) be the rnumber of additions required to compute all

.

the 2" - | rnornzero partial sums of r elements of a set. iIf «wne




more element is added to the set, then the best that could be
done is to add the new element to each of the existing partial
sums. This requires 2r - | additions. This is the smallest number
of additions needed to generate all the additional partial sums
that include the new element. The result is the following
recursion

Pir+i) = P(r) + (2¥ - 1) (3. 3)
which results in

P(r) = 2" = v - 1| (3. 8)
From eq. (3.2, 3.4) the total number of additions_to compute all
partial sums is found to be, after ivncluding n additions for U

ARln) = 2(@" - 1) = r =2n - r

= 2n - legn+l) = 0(n) 2 2n (3.5)

which is identical to (2.4), but with » and n indicating the
number of columns and rows of B respectively in this dual case.
The above result could also be obtained if the r inputs are
partitioned into two subsets of r{y and rz inputs each,
respectively. All the partial sums of each subset are computed,
and the results combined to obtain Y. Regardless of the method of
partitioning, the fastest implementation would result in all the
outputs after a time corresponding to r» - 1 additions, with some
componants of Y computed even sooner. The number of additions per
input is then

Cin) = (2(2" - 1) - r)/r = 2(n/r) -1

w 2(n/login+l)) = 1 ¥ 2n/log n (3.6)

Direct computation of ¢the partial sums requires a number of
additicnsg that is equal to the number of cnes in B. This is easy

to seea, since each row of B corresponds to a number of additions

o “ et e $'.- ..‘ . .".
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of entries of X that 18 core less tharm the rumber of cres 1rn  that
row. An extra addition is required to include the corresponding
element of U, thus resulting in one elemant of Y. Since B in this
characteristic case is the transpose of that of the first
characteristic case, it has the same total number of ones of
r2v=1. The number of additions per input is, therefore
D(n) = 2r=l = (rn + 1)/2 * n/2 (3.7

which 1s 1dentical %o (2.6), but with the roles of the rows and

columng 1nterchanged.

B. The General Case

To apply the above approach to the gereral case with
arbitrary dimensions (1.1), we need to combine the redundancy
removal aspect of the algorithm as introduced above with optimal
partitioning. Let ¢the N inputs of X be partitioned into s sets

Xiy 1 =1, 2, ..., 8 of r elements each. The parameters »r and s

are related by

N = rsg (3.8)
Furthermore we assume that r sati:sfies

M) 2ar - 1 (3.9
To compute all the partial sums of each of the s sets of entries
of the Xi's, a total of (2" - r - 1)N/r additions are needed.
This follows from (3.4) and (3.8). Each partial sum,
corresponding to one entry of Vv, could then be obtained at the
cost of N/r extra additions. This i1ncludes the proper entry of U.
The total of the extra additions to obtain Y 18 NM/r. The total

additions to compute all partial sums 18 then

11
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AMNyr) = (2 — r - 1)N/r + MN/r (3.10)
and the number of additions per r 1nputs is

AM,r) = (M + 2™ - r - 1) (3.11)
which is the dual of (2.11) with M replacing N. Equivalently, the
number of additions per input is

CMyr) = (M + 27 - p» - 1) /r

= (M« 2" - 1) /r -1 (3.12)

| which is alsc the.dual aof (2.12). The above establishes the
complete duality of the two algorithms. The remainder of our
analysis is identical, via duality and proper exchange of
variables, to that of section Il. Comments on redundancy between
blocks are similar to those made at the end of section II, but

with the roles of N and M interchanged.
IV. EFFECT OF INTEGER PARAMETERS

There are several effects of restricting the barameters N,
™M, and r to integer values. We will be concerned mainly with the
first algorithm of output partitioning, since duality exterds the
results immediately to the second algorithm, Let us ivestigate
first the effect of restricting » and N to be integers. Equation
{2.12) could be rewritten 1n the form

C(N,r) = N/r + (27" = r - 1)/r (4, 1)

This could be viewed as a straight line function of N with a

slope of 1/r and a displacement of (2r = r - 1)/r, both of which
)
are parameterized by r. Let us generate these straight lines for :ﬁ
“e
r =1, 2, .... The lowest upper bound of this collection of i
»
S

straight lirnes 18 a pilecewlse linear curve, each segment >f which

18 a part of one of the above straight lines that corresponds to
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a particular integer value of r as depicted in Fig. 1. This
piecewise linear curve represents the least possible number of
additions per output C as a function of jJust N, since r was used
as a parameter in generating this lowest upper bound. The
vertices of the resulting piecewise linear curve are the points
at which C(Nyr) = C(N,r+1), and occurs at Ny where

Nym 27 (r = 1). + 1 (4.2)
The range of values of N for which a given value of r should be
used is Ne[Nn-i, Ny-J. This range, followed next by the related
difference and ratioc

ar=1(r-2) + 1 (N ( 2" (r=1) + 1,

Ni = Npey = r 2r-=i,

Np/Np—y = (@7 (r=1) + 1) /(@™ 1(r-2) + 1) > 2 (4. 3)
should be used in assessing the value, or range of values of r
that correspond to the range of values of N in a given
application or problem. .

One way of relating the cptimization of r as a continucus
variable to that of integer r is as follows. Every gegment of
the piecewise linear curve defired above is a tangent to the
curve of minimal C as a function of N that results from treating
r as a continuous variable. The two curves are farthest apart at
Npy = 1, 2, ... At these points we get from (4.1, 4.2)

C=2" -1 & (N = 1)/ (r=1) =1

= O(N/1log N) = N/leg N (4. 4)
which exhibits the same asymptotic behavior as for continuous r.
This indicates the insensitivity ?f the optimal performance to

small charnges in r.

’
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The effect of restricting N to be integer values 18 simply
incorporated by considering only those points on the above
piecewise linear curve that correspond to integer N.

The last issue of importance here concerns M and s. [t is obvious
that the optimization makes sense only if M)r in the first
algorithm, and N)r for the dual ore. Other than that, if 8 is not
an integer, then all the partitiorned parts of the problem will
rnot be of the same size. In this case we simply use one of the
nearest integer values to s, and only minor deviation from the
optimal behavior should result. We can limit the difference to
only one of the partitioned systems, or try to make them all as
cloge as possible with a difference of cne row (column I1n the

dual case) at the most between any pair.
V. IMPLEMENTATION CONSIDERATIONS

In this section architectures that implement ¢the above
algorithms are introduced. Only the basic corcept of each
implementaticon are cornsidered, sirnce details are better left for

individual applications.
A. The Qutput Partitioning Alaovrithnm

Since every group of r partial sums is evaluated
independently, it suffices to consider the implementation of one
such group. A parallel architecture is then obtained by
replicating this implementation s times. Next, two types of
implementation are discussed.

If the data 18 obtained secduerntially, then a pilpelired

architecture is particularly suitable. We examine here an

o v 8 e o s o




architecture that implements the algorithm for only one group of
r partial sums, which is then replicated in parallel or used
sequentially for the complete implementation. This architecture
is based on a RAM and an adder. Each data item is associated with
the corresponding column of Bj which is used as an address tag.
The contents of the memory at this address are read, added to the
data and restored in the same location. It is clear that this
simple architecture-addl data corresponding to identical columns
of Bj. After all the data is acbtained, we p.gin computing the
partial sums by reading all the data from locations with 1 as the
last bit of their address and accumulating it, using the adder.
The data is then read, the last bit of its address tag removed,
and then applied to a similar memory—adder architecture but with
half the previous memory size. clearly, the above implements the
two steps of the algorithm. The above approach could be modified
in a number of ways to adapt it to a particular envirornment, such
as a microprocessor implementation or a particular bus
architecture.

Our purpose here is to present only the basic approaches,
but since high throughput applications are of particular
interest, the following pipelined architecture is of particular
importance.

The data is passed only once in the above memory-—adder. The
data read from the memory adder 1s obtained in the desired order
of an increasing address tag. Since the data is now well ordered,
and with distinct address tags, the partial sums could be

[

computed in an adder tree that 1s structured to implement the
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steps of the algorithm as depicted i1n Fig. &. This adder tree can
serve several memory-adders i1interfaced to it via serial in /

parallel out shift registers.
B. The Input Partitioning Algor:ithns

This algorithm is naturally suited for parallel
implementation. All the partial sums of each group of r 1nputs
are computed independent ly, and each output 18 obtai1"ed by
collecting one of the partial sums from each 1nput group and one
of the entries of U. we will consi1der the computation of all the
partial sums of only one of the groups of r inputs, since this
could be used as the building blrnck of various implementations.
An elegant structured adder tree architecture that computes all
the partial sums of r numbers is based on the recursion of
eq. (3. 3). As illustrated 11n Fig. 3, the tree architecture
implements the recursion directly. The three partial sums of the
firet two inputs are added each to the thaird 1nput, to result 1n
the desired seven partial sums. This “"mesting” could be repeatec
as many times as needed. A parallel architecture based on copies
of such a tree 18 obvious. A pipelined architecture 18 also
possible, where the sets of r 1nput are applied sequentially to

one tree. Of course all the » inputs of esach set are applied in

parallel to the tree.
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VIi. COMPARISONS AND GENERALIZATIONS

In ¢this section, we consider the performance of the above
two algorithms when they are both available simultarecusly. Also,

generalization of the algorithms and their cost functions are

discussed.
A. Pertormance of The Combined Alaorithms

The total number of additions to compute Y of (1.,1) via the
output partitioning algorithm could be readily shown from the
analysis in section Il to satisfy

Ry = O(MN/log N) = MN/leg N (6.1)
while for input partitioning we obtain

ARy = O(MN/log M) = MN/log M (6.&)
The performance of the two algorithms, combined, is determined by

At > MN/max{log N, log M} (6. 3)
which results 1n

Ay > 2MN/log NM : (€. 4)
a8 a consequence of the obvicus 1nequality

MN/max{log N, lag M} ( ZMN/(log N + log M) = 2MN/log NM
The total number of additions regquired for direct computatiorn 1s,
in the average

Dy = MN/2 (6.3)
The efficiency of the combirned algorithms 1s then determined by

Ag/ Dy > 4/log NM (6.6)
which is achieved by using the ocutput partitioning algorithm i1 f
N)M arnd 1ts dual, the input partitioning ore 1f MIN, The two

algorithms are combined here oriv 1n the sense that they are bath
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available. Only orne of them is used, however, in any given
instance as determined by the values, or range of values of M and
N. Of course, for the case of M = N the two algorithms are
equally effective, and only other implementation considerations

could favor either.
B. Generalizations

The output partitioning algorithm |is applicable to
concurrent partial computations under any operation that is both
associative and commutative. The addition is only one such
operation. Commutativity is required since the algorithm might
perform computations on the input data in other than the order in
which it was given. The dual algorithm however could be applied
without requiring commutativity and is therefore applicable in
computing expressions in any asscciative operation. For example
it could be used in computing partial products of a set of
matrices that are not nrecessarily commutative. It is also
possible tz apply these algorithms to expressions in finite
fields and rings as waell as Boolean algebra ores.

The cost function used rieed rot be restricted to the number
of operations. For example in VLSI applications, a properly
defined cost function might include terms to reflect area and
time delay. Also several partition parameters might be present in

the cost function.



VII, CONCLUSION

Two novel algorithms for simultaneous computation of a large
number of partial sums are introduced and their performance
assessed. The direct computation of D operations are replaced by
0(D/1og D). The new approach is based on a new concept of optimal
partitioning and redundancy removal in arithmetic intensive, high
throughput computing that is expected tc be the basis of a nrew
class of algorithms. This factor of 0(1/1og D) reduction in the
required computatioﬁ appears to be generic ﬁo the new class of
algorithms and is expected to appear in their applicatiom to
other problems such as vector matrix multiplication and other
linear algebra operatiorns.

The riew algorithms represent a departure from brute force

parallel computation where inherent redundancy is not detected or

removed, The resulting architectures admit of systolic
implementation in part, but also require some form of
broadcasting certain computations . The arguments for eystolic
procassing [3]1 are.valid, but for sufficiently large prcoblems,

the removal of redundarncy via the new algorithms could result 1in
fundamental improvement. For example, a preliminary assessment of
an algorithm of the rnew class for a parallel vector multiplier
acc..uulator chip indicates that with VHSIC II implementation, at
least three times more multiplierd could be accommodated in
comparison to direct implementation. The rnew approach is flexible
and could be optimized urder various cost functions, such as chaip
area, number of operations, time, time area product ...etc. It

[y

also could be applied on varicus levels; system, board ,or chip.
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Since breoadcasting is particularly simple in optical computing,
the new algorithms could be of particular value. This could have
an impact on significant applications as in [4].

Application to FIR filters, utilizing their full structure,
should unify and improve the result in [(5,6]. Optimization of
various algorithms for large chips, combining the new algorithms
with techniques of the type in (7] is also one of the objectives
of this research. Since the approcach is directly applicable ta
finite fields and rings, it could also be considered for optimal
coding / decoding architectures and for cdmputqtions with a
variety of arithmetic systems. The applicability ¢to Boolean
expressions mentioned in section VI could result in a new
approach to PLA chip design.

Finally, we propose the following topics for further
research @
1=~ Developing algorithms and architectures of the proposed class
for vector~matrix multiplication, other linear algebra
cperations, and for key signal processing algorithms and filters.
2~ Optimizing the algorithms faor software and hardware
implementation, including advarnced technology chip sets of VHSIC
II and GaRs types as well as those utilizirng optical components.
3~ Assessing the performance of the new algorithms and
architectures in their various implementation modes for certain
supercomput er systems and for key fast signal processing
applications, such as digital beam forming, target identification

and other radar and communicatiorn applications.
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Figure Captions
Fig. 1. The minimal number of operations C as a function of N.
Here r is treated as an integer parameter in the o
generation of this piecewise linear curve. The optimal R
valuaes of r are indicated in the corresponding ranges of N, The
behavior of the input partitiorning algorithm is obtained via ;;
duality by Just replacing N by M above. In this architecture, the :<
computation of all the outputs is completed after a time ~
corresponding to r-1 additions, but some of the outputs are ;
computad sooner. >
Fig. 2. A structured adder tree architecture for a pipelined i'
implementation of the output partitioning algorithm. Several e
memory~adders are served with one such tree. The outputs from e
the memory-adders are multiplexed to the tree via a bank of ;
serial in/ parallel out shift registers. The depicted case is for .
r = 4, The data at the rightmost positicn has an address tag <
corresponding to 1, while the leftmost one corresponds toc 13. In
such an architecture, all the outputs are available .
symultanecusly after a time corresponding to r-1 additions. T
Fig. 3. R pipelined architecture for computing all the partial -
sums of a set of numbers. The rested arrangement shown .
illustrates how this architecture is based on the recursion of :f
(3. 3). The depicted case corresponds to r = 3, where the three r:
partial aumg of the first two inputs are added to the third input :\
o result 1r all the required sevewn partial sums.
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